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A SIMPLE PRESENTATION FOR 
THE MAPPING CLASS GROUP 

OF AN ORIENTABLE SURFACE 

BY 

B R O N I S L A W  W A J N R Y B  

ABSTRACT 

Let F.,k be an orientable compact  surface of genus n with k boundary 
components .  For a suitable choice of 2n + 1 simple closed curves on F.,1 the 
corresponding Dehn  twists generate  both M..o and M.,j. A complete system of 
relations is determined for these generators  and the presentat ions of M.,o and 
M.,1 obtained in th~s way are much  simpler than the known presentations.  

I. Introduction 

Let F..k be an orientable surface of genus n with k boundary components. 

The mapping class group M,.k of F,.k is the group of isotopy classes of 

orientation preserving self-ditteomorphisms of F~.~ which are the identity on the 

boundary. The goal of this paper is to find simple presentations for M,.o and M~.I. 

These groups are generated by Dehn twists ([5]). Lickorish proved in [9] that 

3n - 1 such twists are enough. Recently Humphries proved that 2n + 1 twists 

with respect to curves a,, i l l , ' '  ", an,  fin, 6 (Fig. 1) generate M,,o and M,,1 ([8]). 
This is the minimal possible number of twist generators. The first presentation 
for M2,0 was obtained by Birman and Hilden in [3], who completed a program 

begun by Bergau and Mennicke in [1]. A presentation for the general case was 

obtained by Hatcher and Thurston in [7]. Their presentation is rather compli- 
cated and requires very many generators and relations. It was slightly simplified 

by Harer in [6]. Using their results we shall obtain a presentation with 

Humphries generators. 

THEOREM 1. The mapping class group M,,1 admits 

generators al, bl, " • ", a,, b., d and  relations 

(A) aibia, = b,a, bi, a,+lb, a,+l = biai+lb,, b2dbz = dbzd, 

generators commutes.  
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(B) ( a l b l a 2 )  4 = d (b2a2b la la~b~a2b2) - 'db2a2b~a~a~b ,a2b2 .  

(C) dt2dt~l t ,  t 2 d ( a l a 2 a 3 h t 2 )  ~ = (ub la zbza3b3 )  -1 v ub ,a2baa3b3 w h e r e  t, = 

b l a l a 2 b , ,  t2 = b2a2a3b2, u = a3b3tzd(a3b3t2)  1, v = a ~ b l a 2 b z d ( a l b , a 2 b 2 )  -1. 

Elements a~, b~, d in Theorem 1 can be interpreted as Dehn twists with respect 

to curves a,, /3~, 3 (Fig. 1). 

THEOREM 2. T h e  m a p p i n g  c lass  g r o u p  Mn,o a d m i t s  a p r e s e n t a t i o n  w i t h  

genera tors  a l ,  b l , ' " , a n ,  b ~ , d  a n d  re la t ions  (A), (B), (C) a n d  the  f o l l o w i n g  

re la t ion  (D). 

(D) d ,  c o m m u t e s  w i t h  b , a , . . ,  b l a l a l b ~ . . "  anbn w h e r e  

dn = (u lu2"  • • u . - 1 ) - ~ a l u , u 2  • • • u ,  1, 

u~ = bia~+~b~÷,v~ (b~+la~+~b~a~) ~ f o r  i = 1 , . . . ,  n - 1, 

vl = d, v, = t~_~t~v,_dt~_it~) -1 f o r  i = 2 , . . . ,  n - 1, 

ti = bia,a,+lb, f o r  i = 1 , . . . ,  n - 1. 

Element d, in relation (D) represents a Dehn twist with respect to curve 6n 

(Fig. 5). 

REMARK. For n = 1 there is only one relation (A) in the presentations of the 

mapping class groups. For n = 2 we can omit relation (C). A Birman-Hilden 

presentation of M2.0 contains relations (A), (D) and two more, ( a l b ~ a 2 b 2 d )  6 =  1 

and (db2a2b~a~albla2b~_d)  2 = 1, which can be replaced by relation (B). For n > 2 

relation (C) does not follow from (A) and (B). If we write the relations in the 

form R = 1 then relations (A) and (D) have degree 0, relation (B) has degree 10, 

and relation (C) has degree 1. 

The author is grateful to Professor Joan Birman for helpful conversations and 

encouragement.  

2. Notation and definitions 

We shall often refer to Fig. 1 which represents a surface F,,1 = F. We shall not 

distinguish between isotopic simple closed curves on F, also called circles.  If we 

Fig. 1. 
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cut F along a, (Fig. 1) we get a surface with two new boundary components ,  the 

upper component  is T~ and the lower component  is 3'z,+1 ~. We denote  by S~j, 

i =< i < j _<- 2n, a circle on F\( l -Ja~)  which grabs circles T~ and Ti from the back 

and connects them in front (Fig. 1). Sometimes we call T~ a hole in F \ ( U a ~ ) .  

When we say that a circle 3' on F contains holes 3'~,, • •., 3',k, we mean that 3' does 

not meet  ([..Ja~) and it separates F\(l. .Ja~) into two components,  one of which 

contains exactly the holes 3",,, • •., 3'~k and does not contain the boundary 0F. In 

particular 6,j contains 3', and 3'j. 

DEFINITION. Let 3' be a circle on F and let N be a neighbourhood of 3' 

homeomorphic  to a standard annulus in R 2 with its usual orientation. Let 

h : F ~ F be a homeomorphism,  such that h is the identity outside N and inside 

N the concentric circles rotate counterclockwise while the rotation's  angle 

increases from 0 to 27r going inwards. Any homeomorph ism isotopic to h will be 

called a Dehn Twist along 3' and will be denoted also by % and its inverse will be 

denoted by ~. 

We shall denote  the mapping class group of F by G ' .  Composit ion of 

homeomorphisms in G '  will be written from left to right. If u ~ G '  and 3' is a 

circle on F then the image of 3' by u is denoted (3")u = 3". The Dehn twist along 

3" equals ti3'u, where by t~ we denote the inverse of u in G ' .  Since we denote 

Dehn twist by the same letter as the corresponding circle we shall often write 

(3")u instead of tiyu. More generally we shall write (v )u  = avu for any two 

elements u, v @ G ' .  If a bracket  is separated f rom the next expression by a dot 

then it should be composed with the next expression in the usual way, 

(v)" u = vu. The same notation will be used in groups G and M which appear  in 

sections 4 and 5. 

In the above notation a relation aba = bah is equivalent to (a)b  = (b)d. In 

particular the relations in (A) can be written in the form (a,)b~ = (b~)d~, 

(a,+,)b, = (b,)d,+,. 

3. A presentation of Mn, l by Hatcher and Thurston 

Hatcher  and Thurston found a presentation of M.,o in [7]. They did not carry 

out their computat ions till the end. The main theorems in their paper  are clearly 

true for any surface with boundary.  In particular a presentation of M.,1 can be 

obtained from their results. This was done by Hare r  who obtained an explicit 

presentat ion after some simplifications. We want to use his results with slightly 

different generators so we shall repeat  part  of the argument.  
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A cut system on F is an isotopy class of a collection {C1,'--, C,} of disjoint 

circles on F, such that F \ ( U  C~) is a sphere with holes. If we replace some circle 

C by C', which intersects C~ transversally at one point and misses other Ck's, we 

get a new cut system which is obtained from the old one by a simple move, 
(C)---> (C'~). We suppress circles which don't  change. Let X1 be a graph with one 

vertex for each cut system on F and one edge between every pair of vertices 

connected by a simple move. 322 is obtained from X1 by attaching a 2-cell to each 

cycle of simple moves of one of the following types: 

(L3) (C~)---* (C;)---> (C':)--> (Ci) (triangle) 
r t t (L4) (C~,Cj)---~(C,,~)---->(C,,C;)--->(C, Ci) (C~,C~) (square) 

! . ~  f l l !  ~ I t  (L5)(C,C~)--~(C,  Cj) (C,,Cj)--~(C,,Cj) (Cj, Cj)-->(C~,C,) (pentagon) 

where we assume that all the simple moves are possible. Then X2 is connected 

and simply connected. 

Let us fix the cut system C = {al," • ", a.}. Let a~, fl~ for i = 1,. •., n and &j for 

1 < i < j -< 2n be Dehn twists with respect to curves of the same name on Fig. 1. 

The mapping class group G '  is generated by a, 's, &s 's, tr = a,fl,a,, ~ = fl,a,a.fl., 
and ~ = fl, a~a~+~fl, for i = 1 , . . . ,  n - 1 .  Here r~ permutes circles a~ and ai+l, 

reverses the orientation of a ,  and cr permutes a .  and/3,i (a simple move). We 

shall consider first certain subgroups of G '  and their presentations (Harer). 

H ;  is the subgroup of elements of G '  which leave circles a~ fixed. It is 

generated by a~'s and &s's and admits a presentation with relations 

(i)a. a~ commutes with a t for all i, j. 

(i)b. ak commutes with ~,j for all i, ], k. 

(i)c. (&s)Skt = ~,j for i < j  < k < 1 or i < k < 1 <] ,  

(6,j)8,k = (8,j)~k for i < j  < k, 

(~,~)&fl,~ = (&~)~ for i < j  < k, 

(&~)~,~&,&s&, = (&k)~, for i < j < k < I. 
H '  is the subgroup of elements of G '  which leave the cut system {at," • ", a,} 

invariant. It is generated by H ;  and ~ and r b "  ", r,-1. H '  is defined by the 

following exact sequences: 

1--->H~--->H' o ~-+X,-->l, 1 ~  ( Z l 2 Z )" ~ ++_ X .  --> "2 . - - ,  1 

where 0 (~)E  (Z/2Z)" and O(z~) is the transposition (i, i +  1) in the symmetric 

group ~, .  Therefore H '  is defined by relations (i) and 

(ii)a. (r~+~)f~ = (~-~)~'~.~, (~-~)zj = ~-~ for li - j  I>  1, 

(ii)b. ~-~ E H~ for all i, 
(ii)c. ~2 E n~,  
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(ii)d. [(s~)~, ,T, 2""~-,,({)1-. 11-, 2 " - ~ ' j ] E H ~  for i < j ,  
(ii)e. [~-,,(s~)~'. 1r , -2"- '~- j ]EH~ for i~.i, i ~ j - 1 ,  

(iii)a. (ai)s ~ E H~, 

(iii)b. (c~,)~-j E H~ for all i, ], 

(iii)c. (6,j)s ~ E H~ for all i, ], 

(iii)d. (&j)~'k E H ;  for all i, ], k, 

where the corresponding elements of H~ can be explicitly computed. 

The group G'is  generated by H'  and o-. All relations involving o- come from I 

and II below and from cycles of simple moves of type (L3), (L4), (L5). Hatcher 

and Thurston prove that the following relations suffice for the presentation of G '  

(together with (i)-(iii)). 

I. cr commutes with H'(a, , /3 ,)  where H ' ( a . , / 3 . )  is the subgroup of the 

elements of H' which keep a .  and /3. invariant. 

II. cr 2 E H' .  

III. o'ho'ho E H' whenever there is a circle y on F and a map h E H',  such 

that y intersects a .  and/3,  at one point each and misses other a~'s and 

(y)trh =/3, ,  (fl.)trh = a . ,  (a.)trh = y. All "triangle" relations follow 

from these. 

IV. ~r commutes with h~/Y where h E H '  takes the circle/3 on Fig. 4 onto/3. .  

All "square"  relations follow from this. 

V. Ohloh2oh3oh4o" E H'  whenever there is a circle y on F and h,, h2, h3, h4 E 

H' ,  such that 3' intersects a,_, and/3,  at one point each and misses/3._~ 

and other a~'s and (/3._Oo-h~ =/3. ,  (3/)O'hlorh2 =/3,, (a,)O'hlohzo-h3 = ft,, 
and (a,_~)oh~oh2oh3oh4=/3,. All "pentagon"  relations follow from 

these. 

In order to write explicit relations we have to find generators for H'(a, ,  ft,), 
and to find elements of H '  corresponding to possible choices of y's.  Harer  

proves in [6] that in relations (III) four choices of 3' suffice and we shall see that 

in (V) one choice of 7 suffices. 

The group H'(a . ,  ft.) is generated by a subgroup H~(a., ft.) which leaves/3. 

and all a~'s fixed and by elements which permute a~'s for i < n and reverse 

orientations of all a~'s. Maps ~-~, i < n - 1 ,  permute a~'s. 0 -2 reverses the 

orientations of a .  and/3. .  (0-2)6._1,.f._1 reverses the orientation of a._~. Let us 

cut F along ft. and all a~'s. We get one big hole a = a. U ft. and small holes ~,  

1 _- i _-< n - 1 or n + 2 <= i <= 2n. H~(a., ft.) is generated by twists around holes 

and twists with respect to a standard set of loops which contain two holes each. 

~r 4 is a twist around a. a._~ together with its conjugates by ~-i's provide other 

twists around holes, with suitable identifications. Loops not containing a are 
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obtained from 8.-2,.+2 and 8.-1,.+2 by conjugation by the above described 

elements of H' (a . , /3 . ) .  Dehn twist around loop 3' (Fig. 2), which contains holes 

t L _ 2 - ~ l  / 

Fig. 2. 

-z Other standard loops contain- %+1 and or, equals 6 . . . .  1" 8 . . . .  2" 6.+1..+2" ~.-1" a . .  
ing ot are obtained by conjugation. Therefore, H ' ( a . ,  [3.) is generated by 

2 2 -- 
a n - l ,  "rl ,  " • ", "Tn-2, o" , ( o  r ) ~ n - - l , n Z n - - 1 ,  6 n - - 2 , n + 2 ,  6 n - - l , n + 2  

4 - - 2  
= ( o r ) 6 n - - l , n ' r n - - I ,  6n ,  n + l  " 6 . . . .  2 "  6 n + l , n + 2  " ~ n - - l "  O~ n -  

Therefore relation I produces 

(iv) or commutes with the following elements of H ' :  or._1, ~q,.- -, z.-2, 8.-2,.+2, 
- 2  (or?)8._~,.~.-,, 8.,.+~. 8 . . . .  2" 6.+~,.+2" a ._ , .  a . .  

Relation II produces 

(v) o-2 E H '. 

LEMMA (Harer). Let us cut F along a~, . •., a.- l .  In the relation III it is enough 

to consider only such a loop "g on F \ {oq , . . . ,  ~.-1} which starts at the intersection 

point o[ o~. and [3., surrounds O, 1 or 2 holes y,, comes back to the initial point, then 

goes once along [3. and once along at. and comes back to the initial point. There are 

[our cases up to the action o[ H' .  

By the lemma of Harer we have to consider only four cases, and for each case 

we have to find an element h E H '  which satisfies the conditions in (III). 

Case a. ~, does not surround any hole (Fig. 3a). h = a . .  

Case b. . / surrounds  one hole ~,._~ (Fig. 3b). h = 6.-~... 

I " I 
/3,_~ /I . . . .  , /  

Fig. 3a. Fig. 3b. 
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I I 
I i 

t3.3 13.2 t3._, t 

Fig. 3c. Fig. 3d. 

Case c. 3/ surrounds  two holes 3].-t and 3].+2, cor responding  to the same 

circle a.-1 (Fig. 3c). 

h = 8n-1,n+2 " 6 . . . .  2" 6 n - l , n  " d 2 - 1  " t i n .  

Case d. 3] surrounds two holes y.-2 and 3]._~, cor responding  to different 

circles a . -2  and a._l (Fig. 3d). 

h = 6.-2..-1 • 6.-2,. • 8.-1,. • 07._2. ci._l • 07.. 

There fore  the " t r iangle"  relations produce  

(vi) crho'hcr E H '  for each of the following choices of h : h = a . ,  h = 6.-L. ,  

h = 6.-1.n+2 • 6 . . . .  2" 6n- l , t l  ° d 2 - 1  " d t l ,  

h = 6.-2,.-1" 8.-2,. " 8.-1,. • 07._2" 07.-1" <i.. 

In the relation (IV) we can choose  h = 6.-1, . .  r._~. a .  and get  

(vii) cr commutes  with hMY for  h = 6.-1,. "+'.-1 . a . .  

Finally we have relat ion (V) which corresponds  to a cycle of simple moves  of a 

form 

(O~n 1, O1~. )'--)' (O~n 1. /3rt ) ' - - )  (/3. 1, /3. ) " ' ~  (/3n-1, 3])--")" (O~rl, 3]) ' --)  (O/n, O/n-l). 

Consider  curves/3 and 3]' on  Fig. 4. The  curve/3 intersects 3] and 3]' at one  point  

each. There fo re  we have the following diagram of simple moves.  

(~._, ,~ . )  , (a.- , , /3.)  , (/3._,,/3.) 
\ 

(a.,  3]) '  
\ 

(a.,/3) , 

/ 
(~., 3") ( 

(/3._,, 3 ] ) J  

1 
(/3.-,,/3) 

\ 
(/3._,, ~') 

The  side quadrangles  move  only one circle of a cut system and they can be 
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Fig. 4. 

replaced by sums of triangles (of type L3). We have also two squares of type 

(L4). In view of (vi) and (vii) we can replace the small pentagon by the big 

pentagon in which y is replaced by a fixed circle 3"- We can choose h~ = r.  ~, 

h2 = h3  = h4 = " r n - i  " a n  which satisfy the condition of relation (V). This gives the 

last relation 

( v i i i )  o - h l o - h 2 0 - h 3 0 r h 4 0  - E H '  where hi = r,  i, h2 = h3 = h4  = ' r . - i  " 0~.. 

The elements of H '  corresponding to relations (iv)-(viii) can be explicitly 

computed. 

The mapping class group G '  admits a presentation with generators cry, 8~j, ~-~, ¢, 

~r and relations (i)-(viii). 

4. Proof of Theorem 1 

Let G denote a group with generators a~, b~, i = 1 , . . . ,  n and d and with 

relations (A), (B), and (C). Let ~b:G--> G '  be an epimorphism defined by 

~(a~) = a~, ip(b~) = ill, q/(d) = 8. We want to prove that qJ is an isomorphism. We 

shall construct an inverse map 4) : G'---~ G. 

Define ~b on the generators of G '  as follows: 

4) (~)  = x = b , a , a , b , ,  

4)(~r) = s = a . b . a . ,  

4)(a , )=  a, for i = 1,- .  

4) ( r~) = t~ = b~a~a~+lb, 

4)(~,) = a , j  

dq = ( d ) t - 2 t 3 " "  t i i t , t 2 " ' "  ~i , 

dq = (d, .  ) x t . - l  t . -2  " " " -{2.+1-i 

d,~ = ( d , _ , , , ) X t . _ , t , - 2 " "  L,+,-~ 

dq = (d  . . . .  2 ) Y t . - z t . - 3 " ' "  t 2 . + l - j t ' n - I  " ° "  ?2n+l-i 

dq : (s4)dn_l .n ln_,dn_z.n_,  -{.-z " " di.,+, ~ 

"~ n~ 

for i = 1 , . . . , n  - 1 ,  

where 

if j_-<n, 

if i < n  < j  < 2 n  + 1 - i ,  

if i -_<n < 2 n  + 1 - i  < j ,  

if n < i ,  

if i + j  = 2 n  + 1 .  
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The map 4' extends to a homomorphism if the relations (i)-(viii) are mapped 

by 4' onto true relations in G. If it is true then we can check that t)4' = Idc,. 

Moreover  4' is onto because a~ =4'(a~), d =4'(61,2), b, =d,s~i,, and b~ = 

(b~+l)t~b~+~a~+~ by (A), hence b~ belongs to 4 ' (G')  by induction downwards. 

Therefore in order to prove Theorem 1 it is enough to show that the relations 

(i)-(viii) are satisfied in G. 

We shall establish many relations in G from which the relations (i)-(viii) 

follow. Relations in (A) which do not contain d define a standard braid group. 

Relations in (A) which contain d and six other generators define a generalized 

braid group ([4]). For these groups the word problem has a simple solution 

therefore proofs based on these relations will usually be omitted. We shall 

denote by H,j the subgroup of G generated by ai's and d~j's and we shall denote 

by H the subgroup of G generated by Ho, x, and t~'s. 

(1) a~ commutes with aj for all i and j, by (A). 

(2) (a,)t~ = a,+~, (a,+Ot, = a,, (a,)x = a, for all i, 

(a~) t i=ak for k ~ i ,  k ~ i + l ,  b y ( A ) .  

(3) (ak)dij = ak for all i,/', k, by (A), (2), and definitions. 

(4) t~t,+lt~ = t~+lt~ti+l for i = 1,. -., n - 1, 

t~ commutes with tj f o r ] i - j  I> 1, by (A). 

(5) x t ,_ ix  commutes with t,_~, by (A). 

DEFINITION. e = (d )b2a2b ,a ,a ,b lazb2 .  

(6) (a ,b la2)  4= de = t~a~a¢, by (A) and (B). 

(7) e commutes with d, a~, bl, a2, and with a~, b~ for i > 2, by (A) and (6). 

(8) (b2)e = (e)b2, by (A). 

(9) d commutes with (b2a2b~a~alb,a2b2) 2, hence e = (d)b2d2btdl8~bl82b2.  

PROOF. 

(d ) (b2a2b la ,a lb ,a zb2 )  2 = (e )b2azb ,a la ,b ,a2b2  

= ( (d )bzazb ,a ,a ,b ,a2b2)"  (a lb ,a2)  4 = (g)" (a lb ,a2)  4 = d, by (6) and (A). 

(10) ( d , , , + l ) t , + l t ,  = (d , , ,+ , ) t~+l t~  = d,+,.,+2 for i = 1 , . . . ,  n - 2 .  

[] 
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PROOF. For  i = 1 

(d)t2tltd2 = (e )bEClEbl¢llaab2a2blblalazblb2a2a3b2 

= (e)a3b2a2b~alalb~a2b2d3 = d, by (A), (7) and (9). 

Le t  u = t 3 t , ' " 6 + ~ t z t 3 " "  td, t 2 " .  t~-l. Then  by (A) and (4) 

( d ) u  = d,.,+,, (az.3)u = d,+,.,+2, ( h ) u  = 6, ( h ) u  = ti+l. 

Hence  the conjugat ion  by u takes the above  relat ion onto  (10). 

(11) e = d2,-1.2,. 

PROOF. Le t  u = t 2 t 3 " " t . - ~ h t 2 " ' t . - 2 .  By the definitions 

(dz,,-L2,,)U = (d.-L,,)-~t-,,-l~" and by (10) ( d . - L . ) =  (d )u .  

By (A) and (4) we have ( a . ) a  = a~, ( b . - O a  = bl,  ( a . - O a  = al,  

(b.)t~ = (b.)a./~._~a._~--- ,~3/~2 = ( b 2 ) a 3 b 3 - "  b. .  

Moreove r  

hence  

x t ._ ix  = b.a.b._~a._~a._~b._la.b. t ._l  

w e  

[ ]  

have 

u2t ._ ,~ f i  = t~b".a. . . . bza2b, gtlgt,b,~zb2a3b3. . . a .b . .  

There fo re  

d2.-1,2. = (d)b2gt2bld,gt~bl~2b2a3b3"" a .b .  = e, by (7), (9). [ ]  

DEFINITION.  eq = d2.+1-1,2.+1-i.  

We introduce the above  nota t ion in o rder  to simplify indices. The re  are some 

obvious relat ions be tween  eij's and tk 's. In particular,  by an a rgument  similar to 

the proof  of (10), we can show the following: 

(12) (e~-Li)t, ti-~ = (ei_,.~)t~t~_l = ei.i+l for  i = 2 , . . . ,  n - 1. 

(13) 2 _  -2-2 t i -  d~.,+~ei.i+xata~+~ for  i = 1 , . . . , n - 1 .  

PROOF. The  relat ion is t rue for  i = 1, by (6). 

Let  u = h t 3 " "  t, h t 2 " "  6-,. Then,  by (4), (10) and (12), 

( d ) u  = d,.,+~, (a~)u = a,, ('az)u = a,+,, ( e ) u  = e,,,+a, ( h ) u  = 6, 

and relat ion (13) follows f rom (6). [ ]  
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(14) For  i < n, if tk - i I = 1 then (bk)d,,,÷~ =(di, i+l)/~k, and if lk - i I / 1 then bk 

commutes  with d,,~+1. The  relations are also true if we replace d~.~+l by 

ei, i+l. 

PROOF. The  relations follow from (A), (7), (8), by induction on i. 

(15) b~ commutes  with d,_t.~tid,_l.~, hence t, too.  

b~-2 commutes  with d,-l.~t~-2d~-~,~, hence t~-2 too. 

b. commutes  with d,_~.,xd,_~.,, hence x too. 

The  relations are also t rue if we replace d,_~.~ by e,_~.~. 

PROOF. The  relat ions follow from (A) and (14). 

(16) b, commutes  with d,-1,,+2. 

PROOF. 

dn-l,n+2 = dn - l , n tn - l s  4"tn-ldn-l ,n 

= a4_~d._l,.b.gt.b._la2._~b2._laZ_lb._la.b.d._~., by (A) and (3). 

Rela t ion (16) follows f rom (A) and (14). [ ]  

DEFINrrION. We shall say that  t~ permutes circles 7~ and 7~+~ counterclockwise 

and permutes circles 3'2,-, and 72,+~-~ counterclockwise, d~,,+~t, permutes 7, and 7~÷1 

clockwise and permutes  Y2,-~ and y2,+l-i counterclockwise, x permutes 7. and 

7.+1 counterclockwise. The  inverses permute in the opposite directions. 

DEFIrqa'~ON. A conjugat ion of d,j by x, tk, or  dk,k+~ }-k is proper if it takes 3'~ 

onto  y,+l clockwise or  on to  7,-1 counterclockwise or does not  move  it and it takes 

7s on to  %+~ clockwise or on to  7j-1 counterclockwise or  does not  move  it. 

(17) A p roper  conjugat ion by tk or by x takes d~j on to  some d~.  

PROOF. If i + j ~ 2 n  +1  then  (17) is t rue by (4), (5), and the definitions. 

Assume i + j  = 2n + 1. Then  b. commutes  with the factors of dis, by (A), (14) and 

(16), hence x also does. It remains to consider  a conjugat ion  by tk. If k = i or 

k = i - 1  then the conjugat ion is not  proper .  If k < i - 1  then obviously tk 

commutes  with dis. We have to prove  that  the same is t rue for k > i and by (14) 

we may assume that  i = k -  1. 

dE-l.s = (dk +1j-2) t-~dk, k+~ t-~-~d~_~,~ = (dk +1.j-2) t~ t~-I t~d~-l.dkd~-~,~, 

by (10). Now b~ commutes  with d~-l,~ by (15), (14) and (A). [ ]  

(18) d~ commutes  with d~,~+l if all indices are distinct. 
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4 2 PROOF. If k = n then d~,~+~ = a ,x  and (18) follows from (17). If k ~  n we 

have to consider two cases. 

Case 1: i + j ~ 2 n  +1. We can conjugate both elements by consecutive 

products of a form t~t,+, or t~t~+~. For a suitable choice of positive and negative 

powers the conjugation is proper for d,j and eventually dk,k+~ becomes d or e. 

Further proper conjugation by a suitable product of x's and t0's, p ~  2, leads to 

one of the following pairs: 

(a): (d,e) ,  

(b): (d, ej,3) (which is equivalent by conjugation to (e, dL3) and (e, dL4)), 

(C): (e, d3,4) (equivalent to (d, e3,~) by conjugation by t2t~t3t2). 

The first pair commutes by (7). The second pair commutes by (A) and the 

definitions. The last case requires a use of relation (C). Conjugate relation (C) by 

t3t2. Then the left hand side becomes d1,3d~,4d3,4ala3~14. The right hand side 

becomes (v)ub~a4b3~b:. Now (v)Ftab3a3b2=(d)t~b~gt~ =(d~,3)/~i~ commutes 

with e by (b). (u)~L/~i3/~ = (d)t:t3ft3b~_ = (d)t~t3 = d~,n commutes with e by (b). 

(b~)a~b3(t3b2 = bl. Therefore all factors in the new relation commute with e, with 

the exception of d3,4. Hence d3,4 also commutes with e. 

Case 2 : i + j = 2 n + l .  I f k < i - l o r k > j t h e n ,  b y C a s e l ,  dk,k+~commutes 

with dp.p+~ for i -<_ p < n. Therefore we may assume i = n and dk,k+~ comiaautes 

with d . . . .  ~ by (14). If i < k < j - 1 we can conjugate dk,k+~ properly by a suitable 

product of x's  and tp's, p > i, and we arrive at k = j -  2. Now conjugate by 

w =a~,,+~t~t~+~d~+L,+2. (dii)w =d,+2,i-~_. dk, k+l commutes with d,,,+~ by Case 1. 

(dk,~+~)t~t,÷~ = d~ ~,i commutes with d~+~.i+: by Case 1, and commutes with d~+~.j 2 

by the first part of Case 2. [] 

(19) A proper conjugation by dk,k+ltk takes d~j onto some dpq. 

PROOF. If i + j  = 2 n  +1 then either we get d~+~.j 1 or d~-~j+l, by the defini- 

tions, or d~j commutes with dk, k+l and t~, by (17) and (18). If i + j ~  2n + 1 then 

either d~ commutes with d~,~÷l and tk by (17) and (18), or conjugation by ik is 

proper and d~j commutes with dk.k+~, or conjugation by tk is proper and d~j 

commutes with ek,k+~, while ikdk,k+~ = t~e\,k+~a~a~+,, by (13). [] 

COROLLARY 1. Consider a map f of a set of k distinct dij' s onto another set of k 

distinct di~'s. It also defines a map of a set of 2k indices onto another set of 2k 

indices. The map f can be realized by a product of proper conjugations if it 

preserves the order of indices and two indices sum up to 2n + 1 if and only if their 

images do. 
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PROOF. Every proper conjugation gives a map as in the corollary, by (17) and 

(19). Different elementary maps are described in the definition after relation 

(16). Corollary 1 follows. [] 

(20) dq commutes with dk~ if i < j < k < l  or i < k < l < j .  

PROOF. By Corollary 1 we may assume l = k + l  or j = i + l .  Then (20) 

follows from (18). [] 

(21) (d,c)d,k = (dq)d,k if i < j  < k. 

PROOF. By Corollary 1 we have to consider the following 4 cases depending 

on the indices which sum up to 2n + 1. (i,j, k) may be equal to: 

C a s e  1: (1, 2, 3), 3 <= n. (d)d2.3 = ( d ) t l t 2 d t 2 h  = (d)t~d-t2tl  = ( d ) t ) ~ ,  by (15). 

(d)dl.3 = (d )12d~  = ( d ) t 2 t ~  = ( d ) t 2 t l h  t2 = (d ) t2 t , t l  i2 = ( d ) t ~ h ,  by (15), (10) (4). 

C a s e  2: (n - 1 ,  n ,n +1). ( d . - l , . ) d . , . + ~ = ( d . - ~ . . ) g 2 = ( d . - l . . ) x d .  1..g = 

( d . _ , . . ) d .  ,..+,, by (15). 

C a s e  3: ( n , n + l , n + 2 ) .  (d  . . . .  l)d.+l,.+_~=a.'4 (x_~)~. ~, = a ~ . ( x 2 ) e .  ~ . . x =  

a 4 . ( x 2 ) x e . _ , , . x  = ( d  . . . .  ,)d . . . .  2, by (15). 

C a s e  4: (n - 1, n, n + 2). 

(dn--l .n)dn,n+2 = (dn-- l ,n) tn-- ' lxdn l ,r tXL 1 

= ( d . _ , . . ) d ° _ l ° x d . _ l n X L _ l  

= ( d ° _ l ° ) x d . _ l  °xd° ,°  L 1 

= ( d . - 1 . . ) x 2 d . - , . . i .  1 

= (d.-i..)d.-1..+2, by (15). [] 

(22) (d,k)diidik = (dik)~-k if i < j < k. 

PROOF. By (21) d~kdq&k = dikdqdik, hence (22) is equivalent to dikdqdjkdqd~k = 

dikd,~d,k or (d,k )dq = (d,k )d,~. 

We have again 4 cases as in the proof of (21). 

C a s e  1: (d2.3)d = (d_~.3)d~.3. When we conjugate by t~ t~ we get ( d )dL3  = (d)d:.3. 

This is Case 1 of (21). 

C a s e  2: (d . . . .  ~)d._~.. = aZ. (x2)xd ._ , . .£  = (d  . . . .  1)d. 1 , n + D  by (15). 

C a s e  3: (d.+~,.+g)d . . . .  1 = ( e . - 1 , . ) x  2 = (e ._~. . ) .~ ' ._~. .x  = (d.+l,.+2)d.,.+2, by (15). 
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Case  4: (d . . . .  :)d._,,. = (d._,,.)~t-._,d._,,. = (d.-,,.)$d.-,,.££d._i,.}-._, = 

(d . . . .  2)d.-,,.+2, by(15). [] 

(23) (dik)d.jd-~,d~id~, = (dlk)~,  if i < j < k < I. 

PROOF. By (22) d~jditdqd, = d~jdjtditdst, hence (23) is equivalent to: d~k com- 

mutes with d~dstd~t. By (21) this is equivalent to: d~k commutes with (djj)dkt = 

(dj~)djk = u. It is also equivalent to: dj~ commutes with (d~k)d~ = v. By Corollary 

1 we have to consider 7 cases depending on the indices which sum up to 2n + 1. 

(i ,j ,  k, l)  may be equal to: 

Case 1: (1,2,3,4), 4_- < n. Conjugate by t:. (dl,s)t2 = d. 

(U) /2  = (d2,4)d2,3t2 = (d2,3)t3d2,312 = (dz,3)13t2 = d3,4, by (15) and (10). d3,4 commutes 
with d, by (20). 

Case  2: ( n , n  + l , n  +2,  n +3). Conjugate by t-.-2. (d . . . .  2)i._2=d.,.+3. 

( u ) i . _ 2  = = 

by (15). d . . . .  3 commutes with d.+~,.+2, by (20). 

Case 3: ( n - l , n , n  +2,  n +3). Conjugate by t.-2. (d . . . .  3)t._2=d . . . .  2. 

(v) t . -2  = (dn-l,n+2)dn+2,n+3ln_2 ~- (dn-l ,n+2)dn-2,n-I  "tn--2 = an-2,n+3, 

by (13). d.-z,.+3 commutes with d . . . .  2, by (20). 

Case 4: (n - 2, n + 1, n + 2, n + 3). Conjugate by t._,. (d.-2,.+2)t.-1 = d.-2,.+~. 

(u)t._~ = ( d.+~,.+3)d.+2,.+3t.-~ = (e._:,._,)t._,e._2,._~t._~ = e.-2,.-~ = d.+2,.+3, 

by (15). d.-2,.+~ commutes with d.+:,.+3, by (20). 

Case 5: (n - 1, n, n + 1, rn). Conjugate by x. (d._~,.+l)x = d._~... 

(u )x = (d.,,. )d.+,,,.x = (d.+,,,. )xd.+l,,.x = d.+,,., 

because, by (A), (14) and the definitions, (b.)d.+l,,. =(d.+x,,.)/~.. d.+l,,, com- 

mutes with d._~.., by (20). 

Case 6: (n - 2 ,  n - 1, n, n +2). Conjugate by t._~. (d.-2, . ) t . -1 = d.-2,.-~. 

(u)t._l = ( a . _ , , . + 2 ) d . _ , . . t . _ l  = a . . . .  1. 

d . . . .  ~ commutes with d._:,._~, by (20). 
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Case  7: (n - 2, n - 1, n, n + 1). Conjugate by ~. (d,-2..)~ = d,-2..+1. 

(W)X = (dn--l,n+l)d . . . .  IX = (dn--l,n+l)X = an-l ,n-  

d , , -1 , , ,  commutes with d.-2..+1, by (20). [] 

We have already established that relations (i) are satisfied in G. Therefore the 

map 4, described at the beginning of this section extends to an isomorphism of 

H6 onto Ho. It follows that it is enough to prove relations (ii)-(iii) in their present 

form without an explicit knowledge of the corresponding elements of H6. 

(24) x 2 = d.,n+la 4 E no. 

(25) (d,~)x E Ho, (d,j)t~ E Ho, for all i, j, k. 

PROOF. Either conjugation by x or by ~ is proper. Either conjugation by tk 

or by }k or by tkdk,~+l or by ikdk.k+l is proper. Relation (25) follows from (24), (13), 

(17), (19). 

(26) [(x )t ._lt ._2. . . t,, (x )t._,t._2 . . . ts] E Ho for i < j .  

PROOF. By (2) and (25) we may conjugate the relation by 

u = ~t-j+l"" t . - , t , t , ÷ l " ' "  7.-2. 

We get i ,_lxt ._~xi,_12-[.-i~ = -2 2 - t , -~x t ,_ t x  E Ho, by (5) and (25). 

(27) t, commutes with ( x ) t . - l t . _ 2 . . .  ts, for i # j ,  i # j -  1, by (A) and (4). 

We have established by now that the relations (i)-(iii) are satisfied in G. 

Therefore the map ~b extends to an isomorphism of H '  onto H. It follows that it 
is enough to prove relations (iv)--(viii) in their present form without an explicit 

knowledge of the corresponding elements of H' .  

(28) a.  and b. commute with the following elements of H : t~,. • . ,  In-2, a.-1, 

d.-2..+2, (s2)d.-,..t'.-~, d . . . .  ,d.,.+2d.+,,.+2a._,a 2. 

PROOF. d . - z , .+2=(d . -2 . . - , ) t ._~£ t ._ ,  commutes with b., by (A) and (14). 

(sZ)d._~.t ._~ = d . -L .b .a .b . -~a ._ lb ._ la .b .d ._L .a ._~-  - - 2 2 commutes with b. by (14). 

d . . . .  ld . . . .  2d.+L.+2a2~.-1 2 2- = x a.xd.+L.+2xd.+l.+2a._l 

commutes with b., by (15) and (A). All other relations follow from (A) and (3). [] 

(29) s 2= 2 a . x  E H .  

(30) shshs  E H for each of the following choices of h : h  = a. ,  h = d.-L.,  

h = d.-1,.+2d . . . .  2d._L.ti2._lt~., h = d . -2 . . - ld . -2 , .d . -L~a . -2a . - la . .  



172 B. WAJNRYB Isr. J. Math. 

PROOF. It is enough to prove that (b . )h  = (h)b .  and (a . )h  = a. ,  because 

then shshs = a .xhxa .  E H. The relations are true for h = a. and for h = d.-1,.. 

Consider the third h. d.-i,.+2 commutes with b., by (16). d . . . .  2 = (e.-1..)x = 

(d._l..)xL_,. 

(b . )h  = (b.)Y,e._l,.xd._l..a. = (e._~..)b.a.d. 1,. 

= d.-1,.&f.~-l,.a2.a2, lt2.-lb.a.d. 1,., 

by (A), (14), (13). 

(h )5. = b.t._l d . - l , .a  4.x 2d. _ 1,. L-1 t. -i xd.  -1,.X t. -i d. -l, .a 2 -i gt.b. 

= b.t.-la2.xd.-1..xd. 1,.t.-lgt.6., 

by (15). The equality (b . )h  = (h)/~. follows from (A) and (14). 

Consider now the last h. Let  

w = t . - 3 t . - 4 "  ' '  t l t . - z t . - 3 "  " .  t z t . _ l t . _ ~ _ .  • • t 3 b . a .  • • • b4a4. 

Then hi = ( h )w  = ddl,3d2,3ald2a3, (b . )w  = b3 and we have to prove that (b3)hl = 

(hl)/~3. By relation (C) hi = ( d ) b 2 g t f ,  dlub,azb2a3b3, where u = (d)t2b3gt3. It 

follows from (A) that (bs )h l  = (h0/~3. [] 

(31) S commutes with hsh, where h = d. 1,.t.-la.. 

PROOF. hsh = d.  1..a2. lb ._la.b.d.G.- ld.- l , .  = aZ-ld . -1 . .b .~.b . - ia .b .d . - i , . .  

Therefore  a. and b. commute with hsh, by (A) and (14). [] 

(32) st._ls(t._La.s) s ~ H. 

PROOF. st. ls(t .  la , , s )  3 = a3.-la3x(t.-lx)3, by (A). [] 

It follows from (28)-(32) that relations (iv)-(viii) are satisfied in G, hence ~b 

can be extended to an isomorphism of the mapping class group G '  = M.,1 onto 

the group G. This concludes the proof of Theorem 1. 

5. Proof of Theorem 2 

We shall consider now a mapping class group M = M.,o of a closed surface F,,0. 

We shall keep the notation from the previous sections. In particular G is the 

mapping class group of a surface F,,1 with one boundary component.  It follows 

from [2], theorem 4.3, and from [6], section 4, that there exist two exact 

sequences 

1---'-~'n'l(F..0, p)  r'>A. t 2 > M  71 
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and 

1 ~ Z  t ~ G  t ' ~ A .  >1. 

Here A, is the group of isotopy classes of orientation preserving diffeomorph- 

isms of F,,o which fix a base point p, and f4 is defined by capping aF,,1 with a disc, 

which contains p, and extending each map over the disc by the identity. 

We have to find the kernel of the composition f2f4. The kernel of f4 is 

generated by the Dehn twist to with respect to the boundary 3F,,~. It follows from 

[2] that the kernel of f2fa is generated by to and by "spin" maps 66' where 6 and 

6' are nonseparating simple closed curves separated only by the "hole" bounded 

by 0F,,~. Clearly all spin maps are conjugate in the group G. Let us choose a pair 

6., e, on Fig. 5. Then M admits a presentation with relations (A), (B), (C) and 

relations 6, = e,, to = 1. Moreover 6, represents in G the element d, from 

relation (D) and e. = ( 6 . ) b . a . . . .  b ~ a l a ~ b ~ . . ,  a . b .  in G. 

Fig. 5. 

Let M'  denote the quotient of G by the relation 6. = e.. In order to prove 

Theorem 2 it suffices to show that w = 1 in M'.  
We observe that in G,  w = ( a ~ b , . . . a . b . d . )  z"+2, ( d . ) b .  =(b . )d . ,  and d. 

commutes with all other b,'s and aj's. Also 

( a l b l ' ' "  a . )  2" = 6 . e . ,  ( a ~ b ~ . "  a.-1) 2"-z = 6.-Ie.-1 and ( a . b . d . )  4 = 6.-~6.+1. 

The map 6.+1g.-~ is a spin map, hence trivial in M' .  Therefore in M'  

( a l b l ' "  a . )  2" = d~. and ( a l b , " "  a . - 1 )  2"-2 = ( a . b . d . )  4. 

We shall abbreviate the product b i a i b ~ - l "  • b l a l a l b l "  • • b~-laib~ by b~ • • • b~. Then 

by relations (A) and by the new relations in M'  we have 

to = (a ,b~  . . . b . d . )  2"+2 = (a~bl  " " a . )  2"" ( b .  . . . b . ) "  ( d . b .  . . . b . d . ) ,  

( a l b l "  " a . )  2" = ( a , b l "  " a . - ~ )  2"-2" (b ._~ .  . . b . -1 ) "  ( a . b .  1 " ' "  b.-la.) .  

Therefore 
a . b . - l "  " b . _ l a .  = d2.(b.-~ " " " b . -1 )  -~" ( d . b . a . )  -4 
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and 

O0 -~- d 2 b n d 2 ( b n _ l  . ' .  b n _ l )  - 1 -  anbndn  ( a n b n d n )  3" bndnbn " " bndn .  

Since in M', d . b . . .  • bnd~ commutes with dn and with all ai 's and bi's we have 
2 2 - 3 ~o = d n b . d  .anb.d. ( anbnd. ) • b .  = 1. 

This concludes the proof of Theorem 2. 
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